On the Asymptotic Internal Path Length and the Asymptotic Wiener Index of Random Split Trees
نویسندگان
چکیده
منابع مشابه
Asymptotic Cost of Cutting Down Random Free Trees
In this work, we calculate the limit distribution of the total cost incurred by splitting a tree selected at random from the set of all finite free trees. This total cost is considered to be an additive functional induced by a toll equal to the square of the size of tree. The main tools used are the recent results connecting the asymptotics of generating functions with the asymptotics of...
متن کاملOn the Wiener index of random trees
By a theorem of Janson, the Wiener index of a random tree from a simply generated family of trees converges in distribution to a limit law that can be described in terms of the Brownian excursion. The family of unlabelled trees (rooted or unrooted), which is perhaps the most natural one from a graph-theoretical point of view, since isomorphisms are taken into account, is not covered directly by...
متن کاملThe Wiener Index of Random Digital Trees
The Wiener index has been studied for simply generated random trees, non-plane unlabeled random trees and a huge subclass of random grid trees containing random binary search trees, random medianof-(2k+ 1) search trees, random m-ary search trees, random quadtrees, random simplex trees, etc. An important class of random grid trees for which the Wiener index was not studied so far are random digi...
متن کاملThe total path length of split trees
We consider the model of random trees introduced by Devroye [SIAM J Comput 28, 409– 432, 1998]. The model encompasses many important randomized algorithms and data structures. The pieces of data (items) are stored in a randomized fashion in the nodes of a tree. The total path length (sum of depths of the items) is a natural measure of the efficiency of the algorithm/data structure. Using renewa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2011
ISSN: 1083-6489
DOI: 10.1214/ejp.v16-889